
Lecture 19

Solution of the Spherical-Geometry Sn Equations

1 Source Iteration

The spherical-geometry Sn equations are solved in a manner that is very similar to the

solution of the slab-geometry equations. Source iteration is the basic iteration scheme, as

it is in all Sn calculations. Expressed in terms of the continuum equation, this iteration

takes the following form:
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where 
 is the source iteration index. The only difference between source iteration in slab

geometry and source iteration in spherical geometry is that the angles must be swept in a

specific sequence in spherical geometry if the exact solution with a known total source is

to be obtained with a single sweep. Specifically, the starting direction flux is first swept

from right to left. This provides ψm= 1
2
at each spatial cell center, which in turn provides

the inital flux value for the angular derivative term in the equation for ψm=1. During the

sweep for ψm=1, the angular outflow flux, ψm=3/2 is calculated in at each spatial cell center,

which in turn provides the angular inflow flux for ψm=2. One next performs a sweep for
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ψm=2 and then continues in sequence to sweep all of the directions. One peculiarity of the

method is that all of the fluxes at the origin must be set to the starting direction flux value

at the origin. This follows from the fact that only the starting direction flux points toward

the origin. Thus all fluxes at the origin are rigorously equal to the starting direction flux.

The starting value can be explicitly imposed upon the forward fluxes (µ > 0) at the origin

because they represent incoming fluxes for the first spatial cell. However, this value cannot

be explicitly imposed upon the backward fluxes (µ < 0) at the origin because they represent

outgoing fluxes for the first spatial cell, and thus are determined by the difference equations

for that cell. We can nonetheless explicitly set the backward fluxes at the origin equal to the

starting direction flux at the origin if we replace the spatial diamond-difference auxilliary

equation for the backward fluxes in the first spatial cell with the explicit definition of the

origin fluxes. This means that the average backward fluxes in the first spatial cell must

be calculated using only the balance equation together with the angular weighted-diamond

auxilliary equation.

2 Diffusion-Synthetic Acceleration

The diffusion-synthetic acceleration process is essentially the same in all Sn geometries,

but one must derive the consistent diffusion equation from the Sn equations themselves.
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As in the case of slab geometry, this is done via a Galerkin method applied to the fully

discretized Sn equations. In particular, one first assumes that
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at all spatial points, i.e.,
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Next, one substitutes this dependence into the fully discretized Sn equations, and takes the

zero’th and first angular moments of these equations using the quadrature formula. The

zero’th moment yields the balance equation:
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The first moment yields (after considerable algebra and manipulation) a form of Fick’s law

:
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Expanding the geometric quantity on the right side of Eq. (6), we get
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Clearly, this expression limits to 1
∆ri

as r → ∞ and as ∆ri → 0, which is necessary for

convergence to the analytical form of Fick’s law. To obtain a diffusion equation, we proceed

as in the slab-geometry case and sum the balance equation over two cells:

Ai+ 3
2
Ji+ 3

2
− Ai− 1

2
Ji− 1

2
+ σa,i+1φi+1Vi+1 + σa,iφiVi = qi+1Vi+1 + qiVi . (8)

At this point we must make an approximation that is not necessary in slab geometry. In

particular, We assume that:
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This is not an approximation if one calculates Ai as a current-weighted average:
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However, this would result in a non-linear equation, so instead we define the mid-point

area as follows:
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Substituting from Eq. (9) into Eq. (5), and eliminating the currents using Eq. (6), we get

a three-point diffusion discretization:
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Appropriate Marshak conditions are used to close the system at the boundaries. For

instance, the boundary condition at the center of the sphere is reflective, so J 1
2
= 0. The

equation for the φ 1
2
represents a balance over the interval [0, r1]. This equation takes the

following form:
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Let I denote the total number of spatial cells. The equation for φI+ 1
2
represents a balance

over the interval, [rI , rI+ 1
2
]. Assuming a vacuum condition at the outer surface of the

sphere, the equation for φI is

1

2
AI+ 1

2
φI+ 1

2
+ AI

1

3σt,I

(
φI+ 1

2
− φI− 1

2

) AI+ 1
2
+ AI− 1

2

2VI

+
1

4
σa,IVI

(
φI+ 1

2
+ φI− 1

2

)
=
1

2
qIVI .

(14)

5


